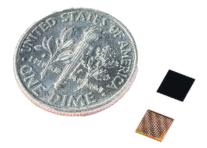
Science

Nixel 512 Datasheet

512 Electrode Neural Recording ASIC


Product Datasheet (Version 1.01)

Science Corporation 300 Wind River Way, Alameda, CA 94501 www.science.xyz/technologies/chips/nixel-512 © Science Corporation, provided under NDA

Page 1

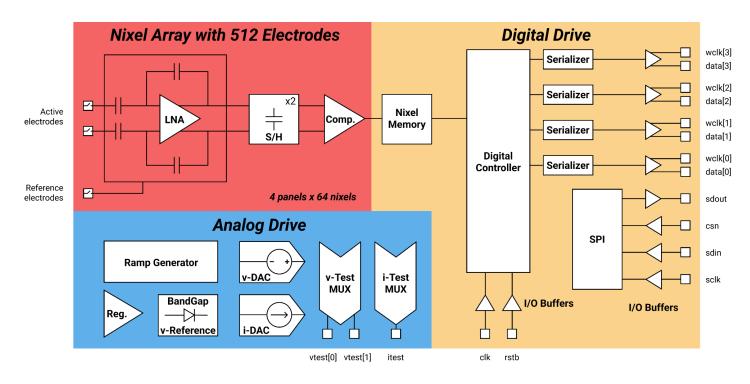
Table of Contents

Table of Contents	1
Summary	2
Key Features	2
Applications	2
Architecture	3
Electrical Interface	5
Digital I/Os	5
Summary Table	7
Technical Table	8
Packaging	10
Bump Locations	12
Contact Information	18

Summary

The Nixel 512[™] chip is a low-noise and low-power mixed-signal programmable neural recording ASIC with 512 electrodes and 16-bit data path. It has an array of 256 differential record channels with integrated low-noise amplifiers (LNAs) and analog-to-digital converters (ADCs) that can record 512 electrodes in parallel at sampling rates up to 32 kHz with ADC resolutions up to 16-bit. The chip has a uniform array of 256 fully differential identical active neural recording elements, called nixels, acting as electrical pixels for neural recording applications. The Nixel 512 chip has a tiny chip-scale package measuring 4 mm x 4 mm, suitable for ultra compact head stages and high-density multi electrode-array (MEA) neural recording applications.

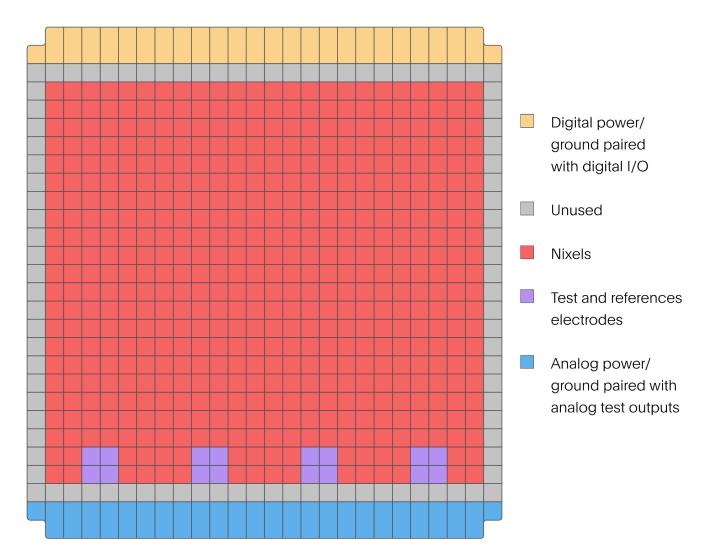
Key Features


- 512 recording electrodes in a uniform array.
- 256 fully differential neural recording elements (nixels).
- User-selectable analog polarity for input and reference electrode selections.
- AC coupled LNA with in-nixel digitization with digital readout.
- Programmable nixel gain and bandwidth (BW) selection for low noise
- Input referred noise below 5 μ V rms in the high gain mode
- High- and low-gain modes for spike and local field potentials (LFP) recording.
- User-selectable reference generation and distribution.
- Simultaneous spike and LFP recording up to 32 kHz sampling rate.
- Programmable ADC resolution up to 16-bit.
- Integrated impedance measurement circuit for every electrode.
- Low-power and low-voltage design (1.2 V digital and 2.5 V analog).
- Ultra small chip-scale package (4 mm x 4 mm) with Cu bumps.

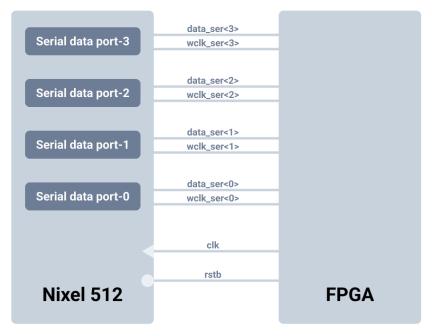
Applications

- Chip-scale ultra-compact neural recording solutions for high-density MEAs.
- Ultra-compact high-density head stages with digital control and readout.
- Active MEAs for "Smart-Dish" type in vitro neural recording applications.
- Chip-scale MEAs for "Neurons-on-Chip" type neural recording applications.
- Low-noise multi-channel scientific data acquisition systems.

Architecture


The Nixel 512[™] chip is composed of the Nixel Array, Analog Drive, and Digital Drive.

The Nixel Array


The Nixel Array is a 2D array of 256 neural recording elements, called nixels, which can each record from two electrodes simultaneously. The nixels are arranged in four identical panels, with each panel containing 128 active electrodes and 4 reference electrodes. All four panels can operate in parallel to record from all 512 electrodes at once. Every nixel has an input switch matrix, a capacitively coupled fully-differential low-noise amplifier (LNA), an analog sample and hold (S/H) circuit, and an analog comparator.

The Analog Drive generates the required currents and voltages, as well as the static and dynamic reference and test signals used by the Nixel 512 chip. The Digital Drive generates all the control and timing signals used to configure and operate the chip using a 4-wire serial programming interface (SPI).

Electrical Interface

The Nixel 512[™] chip runs on dual supply voltages of 1.2 V for digital blocks and 2.5 V for analog blocks. It uses 16-bit digital data paths internally and has four serial data ports with a 16:1 serialization ratio to send out the digital recording results. Each port has a dedicated word clock to indicate the word boundaries in the serial data stream.

The Nixel 512 chip has five digital inputs and twelve digital outputs (I/Os) connected to the world using 1.2 V CMOS I/O buffers and powered with the 1.2 V digital supply of the chip. The chip also has 3-bit general purpose data outputs (GPOs) that can be controlled over SPI if needed.

No.	I/O Name		Туре	Specification		
1	Sustam	rstb		Active low asynchronous reset		
2	System	clk	1.2V	System clock, ≤ 160MHz, 50% duty cycle		
3		csn	CMOS	Active low chip select input for SPI		
4		sdin	Input	Serial data input for SPI		
5	4-wire SPI	sclk		Serial clock for SPI, sclk freq = ¼ of clk		
6		sdout	1.2V	Serial data output of SPI		
7-10	Carial data parta	data_ser_out<3:0>	CMOS	Serial data port for digitized nixels		
11-14	Serial data ports	wclk_ser_out<3:0>	Output	Word clock for serial data port		
15-17	Test / GPO	digtest_out<3:0>	- Lipur	Digital test outputs, can be hooked to SPI		

Digital I/Os

The Nixel 512 chip uses a standard 4-wire SPI interface to program and control the chip, with active low chip select (csn), serial data input (sdin), serial clock (sclk), and serial data output (sdout). SPI interface uses 32-bit words, composed of an 8-bit command (<31:24>), an 8-bit address (<23:16>), and an 16-bit

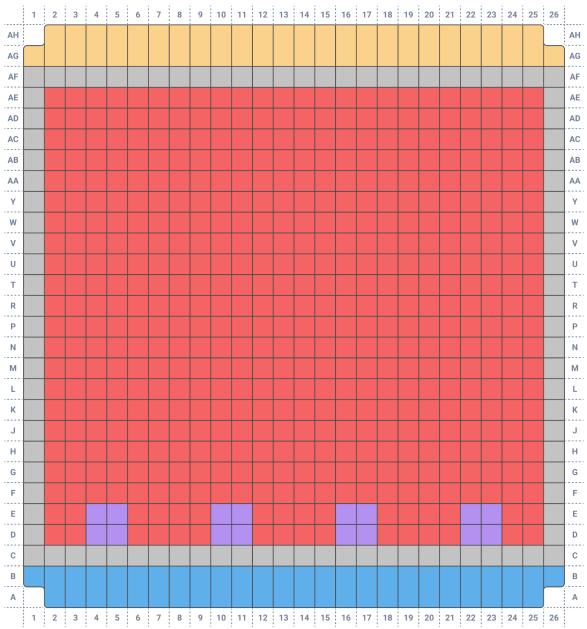
data (<15:0>) and sends the most-significant-bit (MSB) first. Since SPI operates at the rising edge of sclk, csn and sdin are applied at the falling edge of the sclk. Likewise, sdout from the SPI will be updated at the rising edge of the sclk, therefore it should be captured by the external electronics at the falling edge of sclk.

SPI timing takes 32 sclk cycles to enter the 32-bit SPI words into the input shift register of the SPI when csn is LOW. When csn is HIGH, it takes an additional 16 sclk cycles for the SPI controller to decode the SPI commands and read or write to the SPI registers. Including this idle time, an SPI operation will take 48 sclk cycles to complete. It is suggested to generate sclk from clk with a clock division ratio of 4.

The Nixel 512 chip supports clk frequencies up to 160 MHz, providing ADC sampling rates up to 12-bit resolution at 32 kHz sampling rate. In this case, ADC sampling time will be 31.25 μ s, and the serial data stream for full resolution (64 nixels or 128 electrodes per panel) will only take 6.4 μ s, which is less than 21% of the available ADC sampling time. In cases where 10-bit ADC resolution will be enough, a 40 MHz clk will be sufficient for the same 32 kHz ADC sampling. In this 32 kHz 10-bit ADC mode, serial data can be transmitted in 25.6 μ s, which will correspond to about 82% of the available ADC sampling time. At clock frequencies less than ~33MHz, it will not be possible to maintain 32kHZ ADC sampling rate without decreasing the ADC resolution below 10-bit. If lower resolution is not an option, then the ADC sampling rate can be reduced to 16kHz or below to allow enough clock cycles for the single-slope type ADCs to perform ADC conversion. For example, 16 kHz ADC sampling with 10-bit resolution will be possible with clock frequencies just above 17 MHz.

Summary Table

			vdda_bg	Bias generator su	ylqqu	2.5 V	
	Analog power		vdda_lna	Nixel LNA supply			
			vdda_cmp	Nixel comparator	r sunnly		
			vssa_bg	Bias generator gr		0.0 V	
Power supplies			vssa_Ina	Nixel LNA ground			
and returns	Analog ground			Nixel comparator			
(grounds)			vssa_cmp sub	Substrate, ground			
			dvdd2p5	Level shifter sup	2.5 V		
	Digital power		dvdd	Core and I/O sup		1.2 V	
	Digital ground		dvss	All digital block, g		0.0 V	
	32 KHz sampling	Analog	≤ 22mW				
	12-bit ADC	Digital	≤ 8mW				
Power	resolution	Total	≤ 30mW				
dissipation	160 MHz clk						
	Power dissipation		uced to 15 mW at 7	16 kHz sampling w	ith 10-bit A	ADC	
	resolution with a 20 1.2V CMOS I/Os		mpedance (fixed dr	ive strength) ≤ 100	۱۸/		
	1.2 0 01003 1/03		ve only loads	ive stieligtil) ≤ 100	vv		
	Outputs		ed data / test	SPI output			
	outputo		up to 160 MHz	≤ 40 pF, up	to 40 MHz	2	
		<u> </u>	rstb: active low reset input				
	System inputs			, 50% duty cycle, 10	60 MHz		
			Rise-time = fall-ti	me ≤ 25% of clk pe	riod, 1.56r		
				nip select, generate			
			sdin: serial data input, generated at falling sclk				
	4-wire SPI		sclk: serial clk (40 MHz, $1/4^{\text{th}}$ of clk frequency) (Pise-time = fall-time < 6.25 ns)				
Digital I/Os			(Rise-time = fall-time ≤ 6.25 ns) sdout: serial data output, sampled at falling sclk				
			(Load for sdout \leq 40 pF)				
			160 Mbps at 160 MHz system clock				
			Load for data por				
			Port-0	data_ser_out<0>			
				wclk_ser_out<0>			
	Serial data ports		Port-1	data_ser_out<1>			
				wclk_ser_out<1>			
			Port-2	data_ser_out<2>			
				wclk_ser_out<2> data_ser_out<3>			
			Port-3	wclk_ser_out<3>			
	Flip-chip CSP with	Cu	4				
	bumps		4 mm x 4 mm				
				724 Bumps	140 µm		
Package	Bump array / pitch		28 x 26	(none on			
	Ou human a second state	ian	corners)				
	Cu bump composit	וטח	40 μm Cu + 20 μm SnAg				
	Die thickness		12 mil (~305 μm)				


Technical Table

	Active	Reference		Test					
Active electrodes	512	8		8					
Input capacitance	6.8 pF								
	4 panels								
Panel count	One panel has 128 active electrodes, 2 r	eference, and	d 2 test	electrode	es				
Neural interface	Selectable input configuration								
elements	Differential or single-ended operation								
(nixels)	LNA + S/H + Comparator								
	Parameter name	Min		Max					
INA paramatara	Gain, input referred noise	13 V/V, 27 µ	uV rms	200 V/V	V, 4.5 µV rms				
LNA parameters	High-pass corner	3.8 Hz		460 Hz					
	Low-pass corner	1.45 kHz		14 kHz					
Sample-and-hold (S/H)	Ping-pong architecture, with dual analog memory								
	In-nixel digitization with comparator								
Comparator	Analog front-end of single-slope ADC								
	Single-slope-ADC, distributed architectu	re							
	User selectable resolution, 12–16-bit in	resolution, ≤	32 kHz i	in sampli	ing				
	ADC Mode-0: Low resolution, high sample rate	10-bit @ 32	kHz saı	mpling, 4	0 MHz clk				
ADC parameters	ADC Mode-1: High resolution, mid sample rate	12-bit @ 16 kHz sampling, 80 MHz clk							
	ADC Mode-2: High resolution, high sample rate	12-bit @ 32	kHz saı	mpling, 1	60 MHz clk				
	ADC Mode-3: Very high resolution low sample rate	14-bit @ 8 k	(Hz sam	pling, 16	0 MHz clk				
	ADC Mode-4: Ultra high resolution very low sample rate	16-bit @ 2kHz sampling, 160 MHz cl							
	Configurations	Total	Spike		LFP				
Active electrodes	Differential, all for spike	512	480		32				
Active electrodes	Diff. spike, single ended LFP	496	480		16				
	Single ended spike, single ended LFP	256	240		16				
	2 external reference electrodes / panel	Spike and L							
Reference	2 external reference electrodes / chip	external ref	erence e	electrode	connections				
electrodes	1 external reference electrodes / panel	Single exter							
	Programmable internal reference	Using interr							
		Band-gap b							
		generation		ltage an	d current				
	On-chip bias generation	mode DACs							
Analog drive		12-bit v-DA	Js (refei	rences ar	nd test				
Ŭ		signals)							
		7-bit i-DACs							
	Ramp generation for ADC	Programmable ramp generation for ADC with variable slope and reset parameters							
Digital drive	Flexible and programmable operation	Programmable static circuit configuration of analog and digital circuits in terms of							
	of the chip	connectivity		aronount					
		Connectivity	7						

		Programmable timing generation for nixels and ADCs to adjust resolution and conversion time Command based operation of the chip Address based programming over SPI
Programming interface	Serial	4-wire SPI 32-bit SPI Words 8-bit command, 8-bit address, 16-bit data "48 sclk cyles" per SPI operation
Test outputs	Analog	2 Analog voltage test output pads to monitor on-chip generated biases and reference voltages using a pseudo-differential way Voltage test outputs can be used to overwrite internally generated biases and references, including the global routing resources for reference and test electrodes used in the Nixel Array 1 test current output to monitor on-chip generated reference and i-DAC output current
	Digital	3-bit digital test outputs to monitor internal digital signals can also be configured to work as general-purpose output pins controlled over SPI

Packaging

The Nixel 512^{M} chip measures 4 mm x 4 mm x 0.3 mm and uses chip scale packaging with Cu bumps. The 2D bump array counts 28 rows and 26 columns with 724 total bumps (no bumps on corners) and a uniform bump pitch of 140 µm.

 \bigcirc R R R R

Version 1.01

Bump Locations

	Ni	xel 51	2 Chip	Cent	er of Bu	ımp							
Rc	ws	Col	Bump Name	X (um)	Y0 (um)	Y1 (um)	I/O Туре	Explanation	Value	Comment	Regulators	Direction	Avg. Current, Range, Resolution
		1	sub	240				Substrate	0.0 V				
		2	vssa_bg	380				Ground / analog / bandgap	0.0 V				
		3	vdda_bg	520	100			Supply / analog / bandgap	2.5 V	1.8–2.8 V adjustable	REG-1	SOURCE	≤ 5 mA (DC)
		4	vdda_lna	660				Supply / analog / LNA	2.5 V		REG-2	SOURCE	≤ 10 mA (close to DC)
		5	vssa_lna	800		240	Analog power / ground	Ground / analog / LNA	0.0 V				
A	В	6	vssa_cmp	940				Ground /analog / comparator	0.0 V				
		7	vdda_cmp	1080				Supply / analog / comparator	2.5 V		REG-3	SOURCE	≤10mA (close to DC)
		8	dvdd2p5	1220				Supply / 2.5 V digital Blocks	2.5 V		REG-4	SOURCE	≤5mA (switching)
		9	dvdd	1360				Supply / digital / core + IOs	1.2 V		REG-5	SOURCE	≤ 5mA (switching)
		10	dvss	1500				Ground / digital / core + IOs	0.0 V				
		11	sub	1640				Substrate	0.0 V				

	Ni	xel 51	I 2 Chip	Cent	ter of B	ump							
Ro	ws	Col	Bump Name	X (um)	Y0 (um)	Y1 (um)	I/O Туре	Explanation	Value	Comment	Regulators	Direction	Avg. Current, Range, Resolution
		12	vdda_lna	1780				Supply / analog / LNA	2.5 V				
		13	vssa_lna	1920				Ground / analog / LNA	0.0 V				
		14	vssa_cmp	2060	100			Ground /analog / comparator	0.0 V				
		15	vdda_cmp	2200				Supply / analog / comparator	2.5 V				
		16	dvdd2p5	2340				Supply / 2.5V digital blocks	2.5 V				
A	В	17	dvdd	2480		240	Analog power / ground	Supply / digital / core + IOs	1.2 V				
		18	dvss	2620				Ground / digital / core + IOs	0.0 V				
		19	sub	2760				Substrate	0.0 V				
		20	vdda_lna	2900				Supply / analog / LNA	2.5 V				
		21	vssa_lna	3040				Ground / analog / LNA	0.0 V				
		22	vssa_cmp	3180				Ground /analog / comparator	0.0 V				
		23	vdda_cmp	3320				Supply / analog / comparator	2.5 V				

	Ni	xel 51	I 2 Chip	Cent	ter of Bi	ump							
Ro	ws	Col	Bump Name	X (um)	Y0 (um)	Y1 (um)	I/O Type	Explanation	Value	Comment	Regulators	Direction	Avg. Current, Range, Resolution
		24	itest_out	3460				Current test pad / analog / bias generator	0−32 µA sourcing (p-mirror)				
A	В	25	vtest_out <0>	3600	100	240	Analog power / ground	Voltage test pad [0] / analog / bias generator	0−2.5 V v-DAC outputs				
		26	vtest_out <1>	3740				Voltage test pad [1] / analog / bias generator	0-2.5 V v-DAC outputs				
		1	sub	240				Substrate	0.0 V				
		2	dvss	380				Ground / digital / core + IOs	0.0 V				
		3	dvdd	520			Digital power /	Supply / digital / core + IOs	1.2 V				
AG	АН	4	csn	660	3740	IXXXIII	ground / IOs	CMOS (1.2) input: SPI chip select bar	0-1.2 V	From FPGA, at negedge sclk, 50 Ω series res			
		5	sdin	800				CMOS (1.2) input: SPI data in	0-1.2V	From FPGA, at negedge sclk, 50 Ω series res			

	Ni	xel 51	2 Chip	Cent	er of Bu	ump							
Ro	ws	Col	Bump Name	X (um)	Y0 (um)	Y1 (um)	I/O Туре	Explanation	Value	Comment	Regulators	Direction	Avg. Current, Range, Resolution
		6	sclk	940				CMOS (1.2) input: SPI clock	0−1.2 V, fsclk = 1/4 fclk, ≤ 40 MHz, 50% DTC	From FPGA, at negedge sclk, 50 Ω series res			
		7	sdout	1080				CMOS (1.2) output: SPI data out	0 - 1.2 V	To FPGA, at posedge sclk, 50 Ω series res			
		8	rstb	1220			Digital	Active low asynch. reset	0 - 1.2 V	From FPGA, 50 or 20 Ω series res			
AG	AH	9	clk	1360	3740	3880	power / ground / IOs	Clock	0 - 1.2V, fclk ≤ 160 MHz, 50% DTC	From FPGA, 50 or 20 Ω series res			
		10	sub	1500				Substrate	0.0 V				
		11	dvss	1640				Ground / digital / core + IOs	0.0 V				
		12	dvdd	1780				Supply / digital / core + IOs	1.2 V				
		13	data_ser <0>	1920				CMOS (1.2) output: serializer data output [0]	SDR data rate, at rising edge clk, ≤ 160 Mbps	To FPGA, 50 or 20 Ω series res			

	Ni	xel 51	2 Chip	Cent	ter of Bu	Jmp								
Rov	ws	Col	Bump Name	X (um)	Y0 (um)	Y1 (um)	І/О Туре	Explanation	Value	Comment	Regulators	Direction	Avg. Current, Range, Resolution	
		14	wclk_ser <0>	2060		3740 3880	Digital power / ground / IOs	CMOS (1.2) output: serializer word clock output [0]	Frequency = 1/16 of SDR data rate	To FPGA, 50 or 20 Ω series res				
	·	15	data_ser <1>	2200	3740				CMOS (1.2) output: serializer data output [1]	SDR data rate, at rising edge clk, ≤ 160 Mbps	To FPGA, 50 or 20 Ω series res			
A.C.	AH	16	wclk_ser <1>	2340				CMOS (1.2) output: serializer word clock output [1]	Frequency = 1/16 of SDR data rate	To FPGA, 50 or 20 Ω series res				
AG	АП	17	data_ser <2>	2480				CMOS (1.2) output: serializer data output [2]	SDR data rate, at rising edge clk, ≤ 160 Mbps	To FPGA, 50 or 20 Ω series res				
		18	wclk_ser <2>	2620				CMOS (1.2) output: serializer word clock output [2]	Frequency = 1/16 of SDR data rate	To FPGA, 50 or 20 Ω series res				
		19	data_ser <3>	2760				CMOS (1.2) output: serializer data output [3]	SDR data rate, at rising edge clk, ≤ 160 Mbps	To FPGA, 50 or 20 Ω series res				

N	ixel 51	I 2 Chip	Cent	ter of Bi	ump							
Rows	Col	Bump Name	X (um)	Y0 (um)	Y1 (um)	I/O Type	Explanation	Value	Comment	Regulators	Direction	Avg. Current, Range, Resolution
	20	wclk_ser <3>	2900				CMOS (1.2) output: serializer word clock output [3]	Frequency = 1/16 of SDR data rate	To FPGA, 50 or 20 Ω series res			
	21	sub	3040				Substrate	0.0 V				
	22	dvss	3180			Digital	Ground / digital / core + IOs	0.0 V				
AGAH	23	dvdd	3320	3740	3880	-	Supply / digital / Core + IOs	1.2 V				
	24	digtest <0>	3460			lOs	CMOS (1.2) digital test output [0]	0-1.2 V	To FPGA, 50 or 20 Ω series res			
	25	digtest <1>	3600				CMOS (1.2) digital test output [1]	0-1.2 V	To FPGA, 50 or 20 Ω series res			
	26	digtest <2>	3740				CMOS (1.2) digital test output [2]	0-1.2 V	To FPGA, 50 or 20 Ω series res			

Contact Information

Science Corporation 300 Wind River Way Alameda, CA 94501 www.science.xyz

Please note that the data provided in this preliminary product datasheet can be changed by Science Corporation without any notice. Please refer to the official product information you obtained under NDA with product purchase.