Science

Pixel 16K Datasheet

128 x 128 Passive Display Driver ASIC

Product Datasheet (Version 1.0)

Science Corporation 300 Wind River Way, Alameda, CA 94501 www.science.xyz/technologies/chips/pixel-16k © Science Corporation, provided under NDA

Table of Contents

Table of Contents	1
Summary	2
Key Features	2
Applications	2
Architecture	3
Electrical Interface	4
SPI Commands	5
Summary Table	5
Technical Table	6
Packaging	7
Bump Locations	7
Contact Information	8

Summary

The Pixel 16K[™] chip is a display driver IC designed for passive microLED arrays with up to 128 rows and 128 columns for a total pixel count up to 16K. It supports microLED arrays with common cathode configuration using rolling-line operation. The chip has an array of unit pixel drivers, with in-pixel digital memory, 7-bit current-mode digital-to-analog Converters (i-DACs), and high-voltage drive stage. The chip is operated using a 4-wire serial programming interface (SPI), using soft commands for all the critical timing operations in the chip, allowing flexible operation of the chip. The Pixel 16K chip has been fabricated using a high voltage CMOS process, with high (11 V), mid (5 V), and low (1.8 V) voltage devices. It measures 2.4 mm x 2.7 mm, and uses chip-scale packaging with Cu bumps.

Key Features

- Display driver IC for passive microLED and OLED arrays
- 128 x 128 array with common cathodes
- High-voltage current-mode pixel drivers
- In-pixel 7-bit current-mode DACs
- Pixel-level power-down control
- High voltage output drive capability up to 11 V
- Chip operated using soft commands over 4-wire SPI
- Triple supply operation
 - 11 V for high voltage output Drivers
 - 5 V analog for analog core
 - 1.8 V digital core
- Small die size of 2.7 mm x 2.4 mm
- Small chip-scale package using Cu bumps
- Suitable for flip-chip assembly

Applications

- Micro-displays using OLEDs and microLEDs
- Multi-channel current-mode DACs

Architecture

The Pixel 16K[™] chip is composed of four main blocks: Row Drive, Column Drive, Bias, and Digital Drive.

The Row Drive and Column Drive are each arranged in a 2D array in the center of the chip. The Row Drive is divided into the top 64 rows and the bottom 64 rows; each composed of 64 identical unit cells arranged in an 8 x 8 array with high voltage switch arrays. Column Drivers are placed on the right of the chip, composed of 128 elements arranged in 8 x 16 format. Column Drivers contain pixel-level 7-bit current mode digital-to-analog converters (i-DACs), 8-bit pixel memory, and high voltage drive circuits. The Pixel 16K chip contains large probe pads on the right side of the chip for electrical testing and small flip-chip pads for column and row drive outputs, arranged in a 2D array on top of their corresponding drivers.

The Digital Drive controls the chip and is composed of a simple digital controller with a 4-wire SPI. The SPI controls the programming values of the pixel-level i-DACs and states of output drive transistors in the Column Drive and Row Drive using soft commands.

The Pixel 16K chip operates in rolling line scanning mode; only one row of pixels is selected and biased at a given time. First, all columns and the previously selected row are disconnected. Then, the next row is connected to ground to make the corresponding columns ready for current mode drive; the current drive levels of each column come from the previously written i-DAC values. Once the columns are connected to the anodes of the LED array, the LEDs light up during the active line time period. This cycle repeats for the other rows until the entire array has been scanned.

Each pixel has an 8-bit ping-pong type memory which allows pixel memory to be written while pixel values in the previous line time are read; this optimizes the available time and improves the scanning speed. The chip supports address-based RAM-like pixel programming to improve timing efficiency when few pixels need to be updated.

The current mode drivers in the pixels have a 4x current gain at the high voltage output stage and are driven by 5 V i-DACs. The i-DACs are biased by a global bias voltage and generated by a diode connected N-MOS transistors that are biased by a constant current provided externally through the input reference current pin (iref). For an iref of 32 μ A, pixel-level i-DACs will generate current outputs between 0–127 μ A in 1 μ A steps. Connecting the iref to a 5 V analog supply using an adjustable resistor will generate the required input reference of 32 μ A locally.

The Pixel 16K chip uses an externally provided cascode voltage (vncas_col) to isolate high voltage output devices from 5 V devices from pixel-level i-DACs. This isolation is not needed for microLED applications or other applications where high voltage supply can safely be reduced to 5 V and instead, the cascode bis voltage can safely be tied to 5 V to eliminate the generation of one external bias.

Electrical Interface

The Pixel 16K[™] chip runs on triple supply voltages of 11 V for the LED drivers, 5 V for analog biasing and pixel-level i-DACs, and 1.8 V for digital control. It requires two external biases, the input reference current (iref) and the cascode voltage (vncas_col).

The Pixel 16K chip uses a standard 4-wire SPI interface to program and control the chip, with active low chip select (csn), serial data input (sdin), serial clock (sclk), and serial data output (sdout). SPI interface uses 20-bit words, composed of a 4-bit command (<19:16>), an 8-bit address (<15:8>), and an 8-bit data (<7:0>) and sends the most-significant-bit (MSB) first. Since SPI operates at the rising edge of sclk, csn and sdin are applied at the falling edge of the sclk. Likewise, sdout from the SPI will be updated at the rising edge of the sclk, therefore it should be captured by the external electronics at the falling edge of sclk.

SPI timing takes 20 sclk cycles to enter the 20-bit SPI words into the input shift register of the SPI when csn is LOW. When csn is HIGH, it takes an additional 4 sclk cycles for the SPI controller to decode the SPI commands and write to the SPI registers or execute applied soft commands. Including this idle time, an SPI operation will take at least 24 sclk cycles to complete.

The Pixel 16K chip supports sclk frequencies up to 24 MHz which corresponds to a single SPI operation of 1 μ s. A single line with 128 pixels will require 128 DAC writes and approximately 12 soft commands to operate output devices individually over SPI.

When the sclk frequency is 24 MHz, the line time will take 140 μ s, resulting in a frame time of 17.9 ms and a frame rate of 55.8 fps with a full resolution of 128 x 128. When half of the rows are addressed, the frame rate will double and exceed 110 fps. In that case, performance may be improved by running the Pixel 16K chip at slower sclk frequencies such as 12 MHz instead of 24 MHz.

SPI Commands

No	SPI Command Name	Short Command	Hex Code
1	No Operation	NOP	80000
2	Toggle Ping-Pong	TPP	10000
3	Write Row Address	WRA	20000
4	Disconnect Rows and Columns	DRC	30020
5	Reset Force Column	RFC	30021
6	Set Force Column	SFC	30022
7	Reset Force Row	RFR	30028
8	Connect Column Drive	CCD	3002C
9	Write Column Data	WCD	400A0

Summary Table

vcc_hv Supply for high voltage LED Drive									
	Analog pow	er	vhigh_c	ol	Supply for column set level	10 V			
			dvdd_5\	/	Supply for level shifters, i-DACs	5 V			
Power supplies			vss_hv		Ground for high voltage LED Drivers				
and returns		und	vlow_co	bl	Ground for column reset level				
(grounds)	Analog grou			/	Ground for level shifters, i-DACs	0.0 V 1.8 V 0.0 V			
			sub		Substrate, ground				
	Digital powe	dvdd		Supply for core logic	≥ LED Drivers11 Vlevel10 Vs, i-DACs5 Ve LED Drivers:et level0.0 Vrs, i-DACs1.8 V0.0 Vs, 5 V vcc_hvut, generated at fallingd at falling sclkTr=Tf ≤ 10 ns)ed at falling sclk, load 40				
	Digital grou	nd	dvss		Ground for core logic	0.0 V			
	24 MHz	Analog	Analog \leq 7 mW @ 10 μ A drive 128 columns, 5 V vcc_hv						
Power dissipation	sclk, together	Digital	≤ 3 mW	fror	from dvdd				
	with LEDs	Total	≤ 10mW	≤ 10mW					
			1.8 V CI	1.8 V CMOS I/Os					
			csn	csn Active low chip select input, generated at falling sclk					
Digital I/Os	4-wire SPI		sdin	sdin Serial data input, generated at falling sclk					
			sclk	clk Serial clk input (\leq 24 MHz, Tr=Tf \leq 10 ns)					
			sdout	Serial data output, sampled at falling sclk, load 40 pF					
	Reset		rstb	ac	tive low reset input				
	Chip scale p	backage	2.7 mm	x 2.	4 mm				
Package	Bump type		Cu bumps						
-	Die thicknes	SS	12 mil (~305 μm)						

Technical Table

Product type	Display driver	Passive							
Resolution	128 x 128	16K pixel	S						
Design size	2.7 mm x 2.4 mm	12 mil thi	ck (~305 µm)						
CMOS technology	130 nm high voltage CMOS	11 V, 5 V,	1.8 V active devices						
	High voltage	11 V and 10 V (LED Drive)							
Supply voltages	Mid voltage	5 V (i-DACs)							
	Low voltage	1.8 V (core logic)							
	Current mode drive	128 colur	nns, i-DAC per column						
Column drivor	DAC resolution	7-bit							
	Output drive range	0−127 µA	Α, 1 LSB = 1 μΑ						
	Power-down	Per colur	nn						
Davis duis can		128 Rows	S						
Row driver	voltage mode drive	Low and high levels							
Diaginguta	Current	iref, 32 µA into device							
Bias inputs	Voltage	Vncas_col, 5 V							
		1.8 V CMOS							
		csn	active low chip select, generated at falling sclk						
Digital I/Os	4-wire SPI	sdin	serial data input, generated at falling sclk						
-		sclk	serial clk (≤ 24 MHz, Tr=Tf ≤ 10ns)						
		sdout	serial data output, sampled at falling sclk, load 40 pF						
	Wire bonding	29	Testing and probing only 60 μm x 60 μm, Pitch = 80 μm						
I/O pad count			Column drive						
		128	16 rows x 8 columns						
			X-pitch = 120 μm, Y-pitch = 140 μm						
	Flip-chip		Row drive						
		128	16 rows x 8 columns						
			X-Pitch = 120 μm, Y-Pitch = 140 μm						

Packaging

The Pixel 16K[™] chip measures 2.7 mm x 2.4 mm and uses small chip scale packaging with Cu bumps.

Bump Locations

Na	Ded Name	Leastien	Center of Wire Bond Pad					
INO.	Pad Name	Location	X (μm)	Υ (μm)				
1	sub	LEFT	50	2470				
2	vlow_col	LEFT	50	2390				
3	vhigh_col	LEFT	50	2310				
4	vcc_hv	LEFT	50	2230				
5	vss_hv	LEFT	50	2150				
6	vssa_5V	LEFT	50	2070				
7	iref	LEFT	50	1990				
8	vncas_col	LEFT	50	1910				
9	dvdd_5v	LEFT	50	1830				
10	dvss_5V	LEFT	50	1750				
11	sub	LEFT	50	1670				
12	dvss	LEFT	50	1590				
13	dvdd	LEFT	50	1510				
14	rstb	LEFT	50	1430				
15	csn	LEFT	50	1350				
16	sdin	LEFT	50	1270				
17	sdout	LEFT	50	1190				
18	sclk	LEFT	50	1110				
19	dvdd	LEFT	50	1030				
20	dvss	LEFT	50	950				
21	sub	LEFT	50	870				
22	dvss_5v	LEFT	50	790				
23	dvdd_5V	LEFT	50	710				
24	vssa_5V	LEFT	50	630				
25	vss_hv	LEFT	50	550				
26	vcc_hv	LEFT	50	470				
27	vhigh_col	LEFT	50	390				
28	vlow_col	LEFT	50	310				
29	sub	LEFT	50	230				

The Row Drive and Column Drive output bumps are located in the core of the chip. The LEFT arrays are assigned to Row Drive outputs and the RIGHT arrays are assigned Column Drive outputs. The shape and locations of the Row Drive and Column Drive bumps are provided in the mechanical drawing of the Pixel 16K chip, provided under NDA.

$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $			11	U							HU									 	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			dia toot out/05	dig_test_out<0>							row_drive_hv<0>										(2400,2700)
1 sub																					
2 vlow_col vist	1	sub																			
3 vhigh_col vic_hv	2	vlow_col																			
4 vcc_hv vcc_hv v <th< td=""><td>3</td><td>vhigh_col</td><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	3	vhigh_col																			
S vss_hv vss_b vss_shv	4	vcc_hv																			
6 vssa_5V/ is a	5	vss_hv										_									
7 iref 97 4e 4i 35 8 17 6 1 18 12 11 10 9 8 1 10 9 8 1 10 9 8 10 10 9 10 9 10	6	vssa_5V	5	56	48	40	32	24	16	8	0	7	6	5	4	3	2	1	0	 col_drive_hv<0>	H2
8 vncas_col 58 50 42 84 85 85 90 2 70	7	iref	57	57	49	41	33	25	17	9	1	15	14	13	12	11	10	9	8		
9 dvdd_5y is si si <	8	vncas_col	58	58	50	42	34	26	18	10	2	23	22	21	20	19	18	17	16		
10 dvss_5V vo	9	dvdd_5v	59	59	51	43	35	27	19	11	3	31	30	29	25	27	26	з	24		
11 sub a	10	dvss_5V	60	60	52	44	36	26	20	12	4	39	38	37	36	35	34	33	32		
12 dvss e e s <td>11</td> <td>sub</td> <td>6</td> <th>61</th> <td>53</td> <td>45</td> <td>37</td> <td>29</td> <td>21</td> <td>13</td> <td>5</td> <td>47</td> <td>46</td> <td>45</td> <td>44</td> <td>43</td> <td>42</td> <td>41</td> <td>40</td> <td></td> <td></td>	11	sub	6	61	53	45	37	29	21	13	5	47	46	45	44	43	42	41	40		
13 dddd es ss <	12	dvss	6	62	54	46	38	30	22	14	6	55	54	53	52	51	50	49	48		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	dvdd	6	63	55	47	39	31	23	15	7	63	62	61	60	59	58	57	56		
15 csn cs	14	rstb																			
16 sdout 17 19 11 10	15	csn																			
17 sdout 126	16	sdin	12	127	119	111	103	95	87	79	71	71	70	69	68	67	66	65	64		
18 sddk 12 12 12 12 12 10 <	17	sdout	17	126	118	110	102	94	86	78	70	79	78	77	76	75	74	73	72		
19 dvdd 1a 1a 1a 1a a a a a a a a b a b a a b a b a a b a b a a b a b a a b a a b a	18	sclk	12	125	117	109	101	93	85	77	69	87	86	85	84	83	82	81	80		
20 dvss 122 125 107 105 107 101 100 101 100 1	19	dvdd	12	124	116	106	100	92	84	76	66	95	94	93	92	91	90	89	88		
21 sub 112 112 112 100 98 90 92 74 66 111 110 100 106 105 104 <td>20</td> <td>dvss</td> <td>17</td> <th>123</th> <td>115</td> <td>107</td> <td>99</td> <td>91</td> <td>83</td> <td>75</td> <td>67</td> <td>103</td> <td>102</td> <td>101</td> <td>100</td> <td>99</td> <td>98</td> <td>97</td> <td>96</td> <td></td> <td></td>	20	dvss	17	123	115	107	99	91	83	75	67	103	102	101	100	99	98	97	96		
22 d/vss_5v 121 132 100 97 98	21	sub	12	122	114	106	98	90	82	74	66	111	110	109	106	107	106	105	104		
23 dvdd_5V 1x0 1x0 <t< td=""><td>22</td><td>dvss_5v</td><td>12</td><th>121</th><td>113</td><td>105</td><td>97</td><td>89</td><td>81</td><td>73</td><td>65</td><td>119</td><td>118</td><td>117</td><td>116</td><td>115</td><td>114</td><td>113</td><td>112</td><td></td><td></td></t<>	22	dvss_5v	12	121	113	105	97	89	81	73	65	119	118	117	116	115	114	113	112		
24 vssa_5v/ 25 vss_hv/ 26 vcc_hv 27 vhigh_col 28 vlow_col 29 sub	23	dvdd_5V	17	120	112	104	96	88	80	72	64	127	1 26	125	124	123	122	121	120	col_drive_hv<127>	НЗ
25 vss_hv 26 vcc_hv 27 vhigh_col 28 vlow_col 29 sub	24	vssa_5V																			
26 vcc_hv 27 vhigh_col 28 vlow_col 29 sub	25	vss_hv																			
27 vhigh_col 28 vlow_col 29 sub $\hat{\chi}$	26	vcc_hv																			
28 vlow_col	27	vhigh_col																			
	28	vlow_col																			
	29	sub																			
											~	 									
ow_drive_h			ia tact out<1>	llg_test_out<1>							ow_drive_hv<127										
		(0.0)	τ Τ	1	-				-		H1	-					-				

Contact Information

Science Corporation 300 Wind River Way Alameda, CA 94501 www.science.xyz

Please note that the data provided in this preliminary product datasheet can be changed by Science Corporation without any notice. Please refer to the official product information you obtained under NDA with product purchase.